

LOFPLEAT™ HF high flow filter cartridges

Eaton's LOFPLEAT HF filter cartridges can be used in a variety of applications where high flow capacity is required including chemical and water systems.

LOFPLEAT HF filter cartridges are designed with pleated polypropylene construction to provide a high total surface area. A single LPHF cartridge can replace several standard cartridge elements. Change-outs are quick and easy. Unlike standard design cartridges, the flow is inside out. The result is higher dirtholding capacity.

Features and benefits

- Higher flow capacity reduces required number of cartridges
- Lower initial costs with smaller filter housings
- Less labor required for change-outs
- Available with absolute rated filter material at 1, 3, 5, 10, 20, 40, 60 and 100 µm retention ratings
- Inside-out flow for greater dirt-holding capacity

- Capable of flow rates up to 1,892.5 l/min in a single 60" length
- Can be retrofitted in most competitive high-flow housings
- FDA listed (U.S. CFR, Title 21) materials of construction for food and beverage contact

Design

Filter material Polypropylene

Cage, end caps Polypropylene

Gaskets/O-rings EPDM (standard), silicone, Buna-N, fluorelastomer

Retention ratings1, 3, 5, 10, 20, 40, 60, 100 μm
@ 99.9% efficiency

Technical data

Nominal lengths 20", 40", 60" (50.8, 101.6, 152.4 cm)

Outside diameter 6" (152.4 cm)

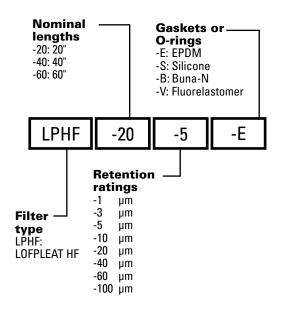
Surface area 2.4 m² per 20" element

Max. operating temperature 71°C

Max. differential pressures 2.1 bar @ 71 °C 3.4 bar @ 25 °C

Recommended differential change-out pressure for disposal 2.4bar

Max. flow rates 20" element: 662 l/min 40" element: 1,325 l/min 60" element: 1,892 l/min


LOFPLEAT HF high flow filter cartridges

Element pressure drop

	mbar/m³/h			
μm	20"	40"	60"	
1	6.0845	2.9395	1.9820	
3	5.0705	2.4495	1.6516	
5	2.3179	1.1198	0.7550	
10	1.3908	0.6719	0.4530	
20	0.6374	0.3079	0.2076	
40	0.5215	0.2520	0.1699	
60	0.4442	0.2199	0.1483	
100	0.3035	0.1466	0.0989	

Note: For chemical compatibility, flow rates, and temperature requirements please consult the factory or your local Eaton distributor.

Ordering code

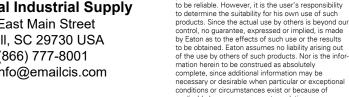
Efficiency of retention

Beta ratio efficiency of retention	Beta 1000 99.90%	Beta 100 99%	Beta 10 90%
1 μm	1	0.6	0.2
3 μm	3	2	1.5
5 μm	5	4	3
10 μm	10	8.5	6.5
20 μm	22	19	14
40 μm	38	18	15
60 μm	60	35	20
100 µm	100	75	45

Upstream particle counts Beta ratio = Downstream particle counts

> © 2016 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed

applicable laws or government regulations.


The micron ratings shown at various efficiency and beta ratio value levels were determined through laboratory testing, and can be used as a guide for selecting cartridges and estimating their performance. Under actual field conditions, results may vary somewhat from the values shown due to the variability of filtration parameters. Testing was conducted using the single-pass test method, water at $9.46 \text{ l/min/}10^\circ$ cartridge. Contaminants included latex beads, coarse and fine test dust. Removal efficiencies were determined using dual laser source particle

> ΕN FF-I PHF

1444 East Main Street Rock Hill, SC 29730 USA Tel: (866) 777-8001

Email: info@emailcis.com

